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SUMMARY 

Boundary-layer solutions have been obtained using the conventional 
two-layer mixing-length turbulence model and the Wilcox-Traci two- 
equation model of turbulence. Both flat-plate and blunt-body 
geometries have been considered. The most significant result of 
the study is development of approximations for the two-equation 
model which permit streamwise StepSiZe comparable to that used in 
mixing-length computations. Prior to this study, calculations 
with the two-equation model could be made only by using stepsizes 
an order of magnitude smaller than those used in corresponding 
mixing-length computations. Additionally, a set of model-equation 

boundary conditions have been devised which apply equally well to 
both flat-plate and blunt-body geometries. Solutions obtained 

with the two-equation turbulence model are compared with experi- 
mental data and/or corresponding solutions obtained using the 
mixing-length model. Agreement is satisfactory for flat-plate 

boundary layers. For blunt bodies, results indicate that further 

investigation is necessary. 
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TRANSITIONAL BOUNDARY-LAYER SOLUTIONS 
USING A MIXING-LENGTH AND A TWO-EQUATION 

TURBULENCE MODEL 

E. Clay Anderson* and David 
DCW Industries 

1. INTRODUCTION 

C. Wilcox** 

In a previous study by Anderson and Wilcox-, preliminary steps were 
taken to incorporate a two-equation turbulence model into the 
viscous-shock-layer analysis presented by Anderson and Moss. 293 

The Wilcox-Traci4 modified form of Saffman's 5 turbulence model was 
selected for possible application. The principal advantage of this 
turbulence model is that conventional boundary-layer thickness 
parameters do not appear explicitly. However, initial attempts to 
apply the model in viscous-shock-layer calculations required a 
boundary-layer thickness definition to avoid numerical difficulties 
associated with the nearly discontinuous t behavior435 of the model 
equations at the edge of the predominantly viscous portion of the 
shock layer. For boundary-layer applications, the location of the 

495 discontinuity has been used to define the outer integration limit 
for the model and boundary-layer equations. This procedure is 
difficult to apply for viscous shock layer applications since gra- 
dients in the tangential velocity component fail to vanish at the 
edge of the predominantly viscous region. 

*Consultant 
**President 

t In a strict mathematical sense, solutions to the model equations 
are discontinuous only in the limit of zero molecular viscosity. 
However, in numerical computations, solutions appear to have dis- 
continuous derivatives because of inadequate mesh-point spacing 
and/or inaccurat,e differencing. Throughout this report, discon- 
tinuous is understood to imply solution discontinuity in the num- 
erical sense, not in the limit of vanishing molecular viscosity. 



In addition to the numerical difficulties associated with the 
discontinuous behavior of the model equations, it is unclear 

how the model-equation boundary conditions should be specified. 
Most previous applications of the model equations have predicted 
effects of freestream turbulence, and the boundary conditions gen- 
erally have been different for each class of flow considered. For 
applications where experimental data are unavailable, it is 
desirable to specify a single set of model-equation boundary con- 
ditions which can be used for a wide range of flow conditions and 
which result in solutions showing acceptable agreement with empiri- 
cal transition-point criterea. 

The boundary-layer equations are considered in the present report. 
The model equations are modified to permit integration without 
specifying any boundary-layer thickness parameters, and the same 
model equation boundary conditions are applied in all calculations. 
Solutions obtained with the two-equation turbulence model are com- 
pared with experimental data and/or corresponding solutions ob- 
tained using a two-layer mixing-length turbulence model. Agreement 
is satisfactory for flat plate boundary layers. For blunt bodies, 
results indicatethat further investigation is necessary. 

2. ANALYSIS 

In this section, the boundary-layer equations governing laminar 
and turbulent flow of perfect gases or mixtures of perfect gases 
in chemical equilibrium are presented. Mixing length and two- 

equation turbulence models are formulated, and the numerical so- 
lution procedure is discussed. 



2.1 GOVERNING EQUATIONS 

The equations of motion governing laminar and turbulent boundary- 
layer flows of perfect gases or of reacting mixtures of perfect 
gases in chemical equilibrium are presented by Anderson and 
Lewis. 6 The present analysis is the same as that of Reference 6 
with the two exceptions that (1) a two-equation turbulence model 
and (2) provisions to account for vorticity interaction effects 
are included. The vorticity interaction analysis is restricted to 
purely constant or constant effective gamma gases, but can easily 
b'e extended to mixtures of perfect gases in chemical equilibrium by 
including gasdynamic programs for solving the shock relations and 
isentropic expansions. 

After non-dimensionalizing the governing equations and applying 
the Levy-Lees transformation to the coordinate system shown in 
Figure 1, the resulting equations are expressed as follows: 

Continuity 

(1) 

Momentum 



. ..-. ..-._... _I 

Figure l.- Coordinate system. 
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Energy 

(3) 

where 

p'v' rJ 
v= 25 

[ 
- aq 
YF+ 

( P,PV + > * 
p3 (2EP2 1 (4) 

pe 'e ue 

-X 
. 

E(x) = Peu,verJ dx 

rl(X,Y) = 

au 
B= 2 

PeU;ieP2J 
.7$ 

(5) 

(6) 

(7) 

C = pfi. 

and 

(8) 

+ 
E = ,&f/p (9) 

5 



At the stagnation point, 

V= 
p,pv + prv( 

L( j +-I> Peuedue/dx) l/2 (10) 

(11) 

and 

6 = l/(j+U (12) 

For laminar flows, the eddy viscosity,e +, is set to zero. For 

perfect gases, the equation of state is 

P = y - ' pT 
Y 

Molecular viscosity, ~1, is evaluated using Sutherland's law 

1-1 = 1 + C *3/2 
T-kc 

where 

C* -= 
C 

(y-1) M: Tz 

(13) 

(14) 



and 

c* = 110.3'K for air. 

Thermodynamic and transport properties for reacting gas mixtures 
in chemical equilibrium are functions of the composition. The 

procedures used to determine these properties are discussed in Ref- 
erence 6. 

2.1.1 Boundary Conditions for the Governing Equations 

The boundary conditions at the surface, n = 0, and at the outer 
edge of the boundary layer, r) = T-I,, for Equations (l-3) are: 

u = 0, E = FIw, v=v 
W 

atn=O 
(15) 

u = 1, H=l at rl = ne 

The outer integration limit, Tl,, is defined implicitly by the solu- 

tion of Equation (2), viz: 

25 dPe -_ 
p2u3p r2j dx ' - 25 

e e e 
(16) 

Note that unlike conventional boundary layers, (aE/an)e is non- 
vanishing for variable-entropy edge conditions. The solution of 

Equation (16) is determined by successive approximations. 



2.1.2 Fluid Properties at the Boundary-Layer Edge 

The method used to correct the boundary-layer edge conditions for 

variable entropy effects is the same as that presented by Mayne 
7 and Adams . Using this method, the mass flow within the boundary 

layer is matched with the corresponding value at the bow shock. 
The shock angle is computed using the input shock geometry, and 
the oblique shock relations are solved. Isentropic relations are 

then solved to determine the corrected edge conditions (see Figure 

1). 

The stream-function at the local boundary-layer solution point is 
defined as 

I 

Fe -- 
‘e = P,U, p u (rt? cos @b)j dy 

0 

At the bow shock, the stream-function is defined as 

% 
= r j+l/j+l 

S 

and the shock angle is 

Restricting the analysis of variable-entropy effects to purely 

constant or constant effective y perfect gases the oblique shock 

OS 
= tan -?drs/dzs) 

(17) 

(18) 

(19) 

relations give: 

Ps = + t sin 2 OS - vs sin 0 
Y"CU 

S (20) 



Ye-l 
Ts = - t2 mY- (To m - T) Y-l Ye 9 

T 
0,s 

ye-l y T 
= y-l ye o,a 

MS = [@is -1) -+] ‘I2 
where 

v = 
sin OS 

S 

1 

ye 

'e-l yM2 sin20 +ye 
ZY-Ye12 

co S 
Y(Y-~)M: sin20 

S 

t(yM:'-in2C3sJ]1'2 ) 

(21) 

(22) 

(23) 

(24) 

(25) 

and 

U 
S 

= cos 0, (26) 
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Isentropic expansion from th.e shock point to the boundary layer 

edge gives: 

T 
Te = 0,s 

Ye-l 
ltFMz 

and 

y-l ye T )I l/2 
_-- 

e Ye-l Y e 

(27) 

(28) 

(29) 

The density and viscosity are determined using the equation of 

state and Sutherland's law. 

The procedures used to define boundary-layer edge conditions at 

constant entropy are presented in Reference 6. Reference 6 includ- 

es the procedure for defining edge conditions for gas mixtures in' 

chemical equilibrium. Variable entropy effects for equilibrium 
ch.emistry have not been considered. 

2.2 MIXING-LENGTH TURBULENCE MODEL 

The two-layer eddy-viscosity model introduced by Cebeci' is used 

in the present report as a basis of comparison, This model as- 

sumes that the inner law formulated by Van DriestY applies from 

the surface outward to the location where the eddy viscosity given 
by the inner law is equal to that of the outer law formulated and 

validated by Clauser" and Klebanoff 11 . The outer law applies for 

the remainder of the boundary layer, 

10 



2.2.1 Inner-Eddy-Viscosity Approximation 

Prandtl's mixing-length concept is stated in transformed variables 
as: 

2 j 2 
t = 

b,y,P> r fi 
E- 1 

,Jlg ' 
o;eiic25P’2 ' aT-l 

(30) 

The mixing-length, R, is evaluated using Van Driest's' proposal 
stated as: 

R = 
k1y Cl - exp (-y+/A+> 1 

where 

(31) 

(32) 

The von Karman constant, kl, is assumed to have a value of 0.4, 
the.damping factor, A', is assumed to have a value of 26. 

2.2.2 Outer-Eddy-Viscosity Approximation 

and 

The eddy-viscosity for the outer protion of the boundary-layer 
in 11 

is approximated using the ClauserL"-Klebanoff IL expression, viz: 

t k2PeueP 'k 
E = 

0 Y. 
1.,17. (33) 

where k2 = 0.0168 and 6k is defined by 

11 



6k = 

and 

-1 
Y- 1,n 

= [l t 5.5(Y/Sf9 

(34) 

(35) 

The boundary-layer edge is assumed to be located at the point where 
u = 0.995. Note that Equation (35) is Cebeci's8 approximation of 
the error-function definition presented by Klebanoff". 

2.3 TWO-EQUATION TURBULENCE MODEL 

The two-equation turbulence-model equations used in the present re- 
port are the modified form of Saffman's 5 

4 
model presented by Wilcox 

and Traci . In this model, the eddy viscosity is defined in terms 
of a turbulent mixing energy, e, and a turbulent dissipation rate, 

w, and is expressed as: 

t & 
beifQ2 e 

= 
CT2 P,V w 

(36) 

The turbulent mixing energy and turbulent dissipation rate are 

assumed to be governed by the following partial differential equa- 
tions. 

12 



Turbule'rit mixing energy 

- 'ae 
2SU z + v an e = [a,FI$I -BIG w]e 

t&- [ c (1d12j~ 1 

Turbulent dissipation rate -.___ 

- aw2 
2su ag - t v E2 = 1 a2F 1;; ] - 

where 

G= 25 . 
(PeUePJ > p,P 

(37) 

(38) 

(39) 

(40) 

and 
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K 
P.,F 

=- 
ii 

.1/2 
(41) 

The six closure coefficients appearing in equations (37) and (38) 
have been assigned the following values by Wilcox and Traci4. 

81 = 9 
100 

8 1 = 
1 2 

B2 = 3 
20 

3 1 = 
2 2 

9=10 l-11 3 1o exp(-2E+) [ 1 

Lx2 = + 1-g 1 ew(-A2)] 

2.3.1 Model-Equation Boundary Conditions 

(42) 

If the entropy at the boundary-layer edge is constant, the model 
equations reduce to 

and 

de+ 
6, w e 

dS 
0 

beuer 
j2 = 

> P, 

dw2 + B2w3 

dS 
0 

(P,u,r 
j2 = 

> ve 

(43) 

(44) 
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For constant fluid properties and body radius, Equations (43) and 
(44) can be solved analytically; the solution is; 

2.C.p u rj )2~ 
2Bl/B2 

e = 

E 

e e e 
e 

B2w; 
9 
.5 +- 2(peuerj I2 ue 1 

e 
e,o 

and 

2(p u rj)2 u 
w = e e e 

e W 

B2we .5 + 2(PeueJ)2 ue e30 , 

(45) 

(46) 

For more complex flows, Equations (43) and (44) are most con- 
veniently evaluated numerically. 

It is not obvious how ee o and we o should be selected. Not- 
ing that Equation (36) rec!iuces to 

, 

2 
E t = 'e ee,o 

e,o o2 jl w e e,o 
(47) 

at 5 = 0, there are three unknowns, two of which must be specified. 
The procedure used to define the model equation boundary condition 
is primarily empirical and consists of defining an eddy viscosity, 

t & e,o' and a turbulent mixing energy, ee o, which are assumed 
, 

constant beyond the boundary-layer edge, 

15 



t 
To establish a numerical Yalue of Ee o, the viscous-shock-layer 

analysis of Reference 2 has been used: By assigning different min- 
imum values of E t 

0 
obtained from Cebeci's two-layer turbulence 

model, t a unit value for e. was found to have a negligible effect 
upon the solutions. The boundary-layer computer code of Reference 
12 with modifications to include the two-equation turbulence model 

was used to define ee o. The value of ee o selected was based 
upon a large number of'calculations for flat-plate boundary layers. 
These calculations were made assuming that the momentum thickness 
Reynolds number at the transition point is 1000 (+15%) for smooth 
surfaces. The boundary conditions used in all calculations pre- 
sented herein are: 

'eee 0 2 
= 3/2 (Ti/100)2 

t & = 1 
co 

2 
w =pe 

e,o e 

(48) 

The surface boundary conditions for the model equations presented 
in Reference 4 are (see Wilcox and Traci'): 

10 (Peue)2rJ - 
e = O; ww = - 3 F ews 

a(25P2 w ( > (49) 

where S is a universal function of surface roughness and surface 

mass injection rate defined by the following functions. 

16 
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SR =@)’ t(5) 1’2 

SB = 6 t 
v; (1 + v:, ; vw 

> 0 

SB = 0 
t . 9 V < 0 
W- I 

k+ = 
P, pw uT k 

a2 Ire i7 W 

+ vw 
v =r 

W 
T 

and 

UT = ue?;;;$(g) w ]1’2 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 
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2.3.2 Modified Forms of the Model Equations 

The model equations (37) and (38) with the edge conditions given in 
Equations (45 - 48) and with the surface boundary conditions given 

in Equation (49) yield solutions which exhibit rapid variations 

at the outer edge of the boundary layer. In numerical computations, 

these rapid variations generally cannot be accurately computed and 
the solutions appear to have discontinuous first derivatives. In 
References 4 and 5, these discontinuities have been used to define 
the outer integration limit for the boundary-layer form of the 

model equations, For viscous-shock-layer solutions, it is desir- 
able to integrate the model equations from the surface to the bow 
shock which requires that the model equations be integrated to a 
distance 50 or more times the thickness of the predominantly vis- 
cous portion of the shock layer. In addition to the difficulty 

associated with the model equations' discontinuous behavior, the 
normal gradient of the tangential velocity component appearing in 
Equations (37) and (38) does not approach zero when vorticity in- 
teraction effects are significant for either the shock-layer or 

the boundary-layer equations. This and/or variable fluid proper- 

ties at the edge of the boundary layer or at the bow shock for the 
viscous shock layer precludes reducing the model equations to ana- 
lytic forms at the outer boundary. The latter difficulties have 

not been adequately considered in the present report, but a repre- 
sentative example is presented which shows the influence of vorti- 
city interaction. 

In the following paragraphs3 the procedures used to eliminate the 

discontinuous behavior of the model equations and the modification 
which permits the model equations to be used for homogeneous and 
isotropic freestream turbulence are presented. The modified form 

of the model equations has been arrived at by relyinguponcompu- 
ter optimization, some degree of empiricism, and thk two-layer 

mixing-length turbulence model. The only restrictions imposed in 

18 



modifying the model equations are: (1) the near-wall behavior 

should not be significantly altered; (2) the velocity profiles, 
skin-friction and heat trans,fer distributions should show satis- 
factory agreement with a corresponding solution obtained using 
the two-layer mixing-length model and/or. experimental data; and 
(3) the outer limit of integration for both the boundary-layer 
and model equations should extend several boundary-layer thick- 
nesses outside the boundary layer. 

The discontinuous behavior of the model equations near the outer 
edge of the boundary layer is primarily the result of the large 
negative gradients in the eddy viscosity. By replacing the eddy ' 
viscosity appearing in the diffusion terms of Equations (37) and 
(38) with the two-layer mixing-length expressions, the model 
equations predict an intermittant like behavior for the eddy vis- 
cosity profiles near the outer edge of the boundary layer. A 
number of calculations have been made to determine a formulation of 
the diffusion coefficient expressed in terms of model predicted 
variables. The suggested replacements for the diffusion terms are: 

c(1 + 31 &+I g + C(1 + D> e 

and 

2 2 
~(1 + Z2 E+> !& * C(l+D) e 

(56) 

(57) 
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where 

D=[1- 0.85 aE+ 
;q- 20 

or 

+ 

II 
E’ 

D= l- 0.85 exp (- T)] Eiax ; g+< 0 

(58) 

(59) 

If the freestream turbulence is assumed to be homogeneous and 

isotropic, the dissipation terms can be replaced by the following 

expressions: 

W- 

BIGw + BIG 
we+ Iw - “,I 

2 (60) 

and 

For the wide range of conditions considered in making the modifi- 

cation in the diffusion coefficient, best overall results were ob- 

tained when the replacements given by Equations (56 - 61) are 
used. The computer code provides options for selecting different 

combinations of diffusion coefficients and dissipation terms. 

20 



2.3.3 Description of the Numerical Method and Essential Features 
of the Computer Code 

The numerical solution procedure used in the present report is 
identical to that presented in Reference 6 and in the associated 

12 computer code user's manual . Extensive modifications and re- 
visions have been made to this computer code to include vorti- 
city interaction effects and the two-equation turbulence model. 
However, the flow logic, basic input data, and program structure 
are essentially unaltered, Therefore, only a brief description of 
the numerical method and the procedure used to control the long- 
itudinal stepsize, Ax, is presented here. 

For numerical solution, the second-order partial differential 
equations are linearized and expressed in a standard parabolic 
form 

fi w w 
an2 

+ a1 F + a2@ + a3 + a4 ag = 0 (63) 

where @ represents u for the momentum equation, H for the energy 
equation, e for the turbulent mixing energy equation and w2 for 
the turbulent dissipation rate equation. Implicit finite differ- 
ence expressions are used to approximate the derivatives appearing 
in Equation (63). Derivatives in the normal coordinate direction 
are represented by three-point expressions and two-point differences 
are used in the longitudinal coordinate direction. When these ex- 
pressions are substituted into Equation (63), the resulting dif- 
ference equation is of the form: 

AN 'M,N-l+ 'N'M,N + 'N'M,N+l = DN (64) 
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Equation (64), along with the. boundary conditions, constitutes a 

system of tridiagonal form for which a number of efficient algo- 

rithms have been deve1ope.d. The subscript N deno.tes the grid 
point number along the coordinate normal to the body surface, while 

the subscript M denotes the grid point number along the body sur- 

face, 

The solution for a given body shape, freestream conditions, and 
pressure distribution is obtained as follows. First, the boundary- 
layer edge conditions are computed assuming a constant entropy 
expansion. At a local body station, the energy equation is solved 
for FI, and the momentum equation is solved to determine u us- 
ing the tridiagonal formalism. The continuity equation is then 
solved using the trapezoidal rule. The molecular and eddy (if 
turbulent) viscosities are then evaluated. When the two-equation 
turbulence model is used, the two model equations are integrated 
using the tridiagonal formalism and are iterated until the profiles 

for both e and w converge within specified limits. (Iteration 
is unnecessary if the algebraic mixing-length model is used). The 
eddy viscosity is then determined from the e and w distribu- 
tions. The procudure is then repeated at the local body station 
until the governing equations and model equations simultaneously 
satisfy the specified convergence requirement. The solution is 
then marched downstream to the desired length. If vorticity in- 
teraction effects are considered, the edge conditions are recomput- 
ed and the solution is repeated. 

For efficient integration of the turbulent boundary-layer equa- 
tions, especially when the two-equation turbulence model is used, 
it is essential that the computer code include provisions for in- 
ternally adjusting the longitudinal stepsize, Ax. The computer 
code used in the present analysis provides both external and in- 

ternal control of the stepsize. In the external-c.ontrol option, 
the stepsize is controlled by specifying a maximum permissible 
value of Ax, and preselecting solution points in regions where the 

22 
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pressure gradients are large. In the internal-control option, 
Ax is controlled by monitoring the convergence rate both of the 
governing equations and of the model equ,ations .at the local solu- 
tion station. Depending upon counters input to the program, the 
stepsize may be reduced either before or after the local iteration 
procedure is completed if the convergence rate' is too slow; con- 
versely, stepsize may be increased after the solution is obtained 
if the convergence rate is sufficiently fast, 

For most calculations, the stepsize approaching the transition 
point has the maximum permissible value and is reduced by a factor 
of 10 or more in the transition region. Downstream of the trans- 
ition region, the stepsize normally increases to the input maximum 
value, For the data presented in this report, the computation 
cost for the turbulent calculations using the two-equation model 
exceed that required for the two-layer mixing length model by a 
factor of 1.5 to 3. 

3. RESULTS AND DISCUSSION 

Numerical solutions of the boundary-layer equations governing 
laminar, transitional, and turbulent flows of perfect gases or 
mixtures of perfect gases in chemical equilibrium are presented 
in this subsection. The solutions are obtained using both the 
two-equation and the mixing-length turbulence model. For the two- 
equation model, the model-equation boundary conditions applied in 
all calculations are those expressed by Equations (48) with Fi 
assigned a value of 0.13. The roughness height, k, is assumed to 
correspond to the smooth wall value, viz, 

k = 100/NRe,m 
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Unless specified, all results presented for the two-equation 
turbulence model have been obtained using the modifications ex- 
pressed by Equations (56) thru (61). 

For flat-plate boundary-layer solutions, the two-equation turbu- 
lence model results are compared with experimental data and with 

mixing-length turbulence model results. The transition solutions 
corresponding to the mixing-length model have been obtained as- 
suming that transition is initiated at a momentum-thickness Rey- 
nolds number of 1000, and the length of the transition region is 
determined by assuming that the edge Reynolds number at the end of 
transition is two times the value at the transition point. 

For blunt-body solutions, the two-equation turbulence model results 
are compared with corresponding solutions obtained with the mix- 
ing-length model. Transitional solutions obtained using the mix- 
ing-length model assume that transition is initiated at a momentum 
thickness Reynolds number of 250, and the length of the transition 
region is determined in the same manner as for a flat plate. 

For the two-equation turbulence model, the location of the transi- 
tion point and the length of the transition region are determined 
automatically as part of the solution to the model equations. 

3.1 FLAT- PLATE BOUNDARY-LAYER CALCULATIONS 

Three flat-plate boundary-layer solutions for a perfect gas and an 
adiabatic surface boundary condition have been obtained. These 
solutions correspond to the experimental data identified as Case 
Numbers 20, 26, and 62 in Reference 13. Figures 2, 3, and 4 show 
comparisons of the skin-friction distributions with experimental 
data for Case 20 (M, = 3.70), Case 26 (M, = 2.58), and Case 62 

CM, = 4.54), respectively. Numerical results corresponding to the 
modified form of the two-equation turbulence model and both fully 
developed and transitional turbulent results corresponding to the 
mixing-length model are presented for the three cases. For Case 
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62, the solution corresponding to the unmodified, form of the two- 
equation model is also presented. 

Results shown in Figures 2 through 4 demonstrate that fixingthe 
model equation boundary conditions or the transition point criteria 

for the mixing-length model without prior knowledge of experimental 
data cannot result in accurate predictions of the transition point 

for a given problem. By treating each of the three problems sep- 
arately, the experimental data can be reproduced within -+3% using 
either transitional turbulence model. 

When the turbulence models are adjusted to predict the transition 
point at the same location, the resulting solutions show a negli- 
gible difference in the predictions for the more important bound- 

ary-layer parameters, This is illustrated by the results obtained 
for Case 62 where the two-equation model solution with the fixed 
boundary conditions and the mixing-length solution with the fixed 
transition point criteria predict transition at approximately the 
same location. For this case, comparisons of the boundary-layer 
thickness parameters 6, AC, and 0,. and velocity profiles are pre- 
sented in Figures 5 thru 8 respectively for the four solutions. 
The fully developed turbulent flow solution obtained with the mix- 
ing-length model is presented as a reference, and it is not ex- 
pected that the transitional solutions would show general agreement 

with this solution. For the transitional solutions, the least 
satisfactory agreement is obtained for the boundary-layer thick- 
ness distributions shown in Figure 5. The modified and unmodified 
forms of the two-equation model predict boundary-layer thicknesses 
which are approximately 15% greater than that given by the trans- 
itional mixing-length model. These differences have little in- 
fluence upon the boundary-layer solution and reflect minor varia- 
tions in the velocity profiles near the outer edge of the boundary 

layer. 

The comparisons of the compressible displacement thickness, 6c, 
and momentum thickness, Om, distributions shown in Figures 6 and 
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7, respectively, are satisfactory for the three transitional solu- 
tions. 

Representative comparisons. of velocity profiles for Case 62 at a 
location 25.4 cm downstream of the plate leading edge are shown in 
Figure 8 for the four solutions obtained. The velocity profile 
corresponding to the modified form of the two-equation model solu- 
tion is essentially identical to the profile corresponding to the 
mixing-length model solution in the near-wall region and shows a 
maximum difference of approximately 5% through the remainder of 
the boundary layer. The velocity profile corresponding to the un- 
modified form of the two-equation turbulence model solution differs 
from the mixing-length solution by approximately 10% in the near- 
wall region and shows a maximum difference of approximately 25% 
through the remainder of the boundary layer, Overall agreement 
between the three transitional turbulence models is regarded as 
satisfactory. 

Figure 9 shows comparisons of the Stanton number distribution ob- 
tained with the modified form of the two-equation turbulence model 
and the fully developed and transitional mixing-length solutions 
for equilibrium Mach 7.58 airflow over a flat plate, The experi- 
mental data were obtained from Reference 14. Both transitional 
solutions locate the transition point with sufficient accuracy for 
this case and show acceptable agreement with the experimental heat 
transfer data. 

3.2 BLUNT-BODY BOUNDARY-LAYER CALCULATIONS 

Solutions presented in this section corresponding to the modified 
form of the two-equation turbulence model represent a direct ap- 
plication of the modifications developed for flat-plate boundary 
layers to blunt-body flows, Local edge conditions for the model 
equations have been determined by numerical integration assuming 
that normal gradients of e and w vanish. Note that the replace- 
ments expressed by Equations (60) and (61) should not be used for 
solutions where the fluid properties at the edge of the boundary 

layer vary. 
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For solutions which include variable entropy effects, boundary- 
layer thickness, 6, is assumed to be located at the point where 
=jf= 0.995 instead of ii = 0.995, and the outer limit of integration 
for the boundary-layer equations is defined by Equation (16). 

The present formulation of the boundary-layer equations for solv- 
ing variable entropy problems results in solutions which show ex- 
cellent agreement with the viscous-shock-layer analysis of Ref- 
erence 2. 

Figure 10 presents heating-rate distribution along the surface 
of a 5 degree half-angle, spherically-blunted cone in a Mach 8 free- 
stream. Solutions for constant and for variable-entropy edge con- 
ditions are presented for both the modified form of the two-equa- 
tion turbulence model and for the transitional mixing-length model. 
For the mixing-length model, the transition point was located 
during the first (constant entropy at the boundary-layer edge) solu- 
tion pass and held fixed for subsequent solution-passes. This is 
consistent with the momentum-thickness Reynolds number definition 
for the transition point. This definition is an empirical cor- 
relation of experimental data arrived at by assuming stagnation 
entropy at the boundary-layer edge. In the present report, the 
transition point is assumed to be located at the point where the 
momentum thickness Reynolds number is 250 for the first solution 
pass. After correcting the solution for variable entropy effects, 
the momentum-thickness Reynolds number at the same location on the 
body surface is 865, and the location of the point where the 
momentum-thickness Reynolds number is 250 is approximately 4 cm 
downstream of the stagnation point instead of approximately 15 cm 
which was obtained for the constant entropy solution. The influ- 
ence of variable entropy effects upon the laminar heating rate is 
not significant except at distances greater than about 16 cm 
downstream. 
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The two-equation turbulence model predicts transition to turbu- 
lent flow at a momentum thickness Reynolds number of approximate- 
ly 400 for both the constant entropy and variable entropy edge 
conditions. The heating rate predictions using the two turbu- 
lence modelling techniques differ by a maximum of 5% in the 
fully developed turbulent region for the constant entropy edge 
condition solution and by approximately 10% when corrected for 

variable entropy edge conditions. When the two turbulence 
models are adjusted to predict transition at the same location 

on the body surface, there is no significant difference in the 

resulting solutions for either constant or variable entropy edge 

conditions. 

Heating rate distributions corresponding to solutions obtained 
using the modified form of the two-equation turbulence model and 
the fully developed turbulent and transitional mixing-length 
model are presented in Figure 11 for a Mach 19 freestream flow 
over a 5-degree half-angle spherically blunted cone. This solu- 

tion was obtained for an equilibrium air mixture. For this case, 

both transitional solutions resulted in approximately the same 
heating rate distribution and only the two-equation turbulence 
model solution is presented for the transitional case. 
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4. CONCLUDING REMARKS 

The solutions presented for flat-plate boundary layers demonstrate 
that the two-equation turbulence model with a fixed set of model- 
equation boundary conditions provides results. which show satisfac- 
tory agreement with the results obtained using the established 
mixing-length turbulence 'model and with experimental data, 

For blunt bodies, the two turbulence modeling techniques result 
in solutions which show satisfactory agreement in the regions of 
fully developed turbulent flow, but the two-equation turbulence 
model results in large differences in the location of the trans- 
ition point when corrected for variable entropy effects. The lat- 

ter result is to be expected, and the adequacy of the model must 

be determined by further comparison with experimental data. 

For the problems presented, the mixing-length turbulence model 

would be expected to provide adequate results and there is no 
specific advantage in using the more complex two-equation turbu- 
lence model. However, solutions obtained with the two-equation 

model do not require the definition of any boundary-layer thick- 
ness parameters which is a significant advantage when radiating 
flowfields or other complex flows are considered. 
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